A class of polynomially solvable linear complementarity problems
نویسنده
چکیده
Although the general linear complementarity problem (LCP) is NP-complete, there are special classes that can be solved in polynomial time. One example is the type where the defining matrix is nondegenerate and for which the n-step property holds. In this paper we consider an extension of the property to the degenerate case by introducing the concept of an extended n-step vector and matrix. It is shown that the LCP defined by such a matrix is polynomially solvable as well.
منابع مشابه
A Class of Linear Complementarity Problems Solvable in Polynomial Time
We describe a “condition” number for the linear complementarity problem (LCP), which characterizes the degree of difficulty for its solution when a potential reduction algorithm is used. Consequently, we develop a class of LCPs solvable in polynomial time. The result suggests that the convexity (or positive semidefiniteness) of the LCP may not be the basic issue that separates LCPs solvable and...
متن کاملOn a homogeneous algorithm for the monotone complementarity problem
We present a generalization of a homogeneous self-dual linear programming (LP) algorithm to solving the monotone complementarity problem (MCP). The algorithm does not need to use any \big-M" parameter or two-phase method, and it generates either a solution converging towards feasibility and complementarity simultaneously or a certiicate proving infeasibility. Moreover, if the MCP is polynomiall...
متن کاملLinear Complementarity and P-Matrices for Stochastic Games
We define the first nontrivial polynomially recognizable subclass of P-matrixGeneralized Linear Complementarity Problems (GLCPs) with a subexponential pivot rule. No such classes/rules were previously known. We show that a subclass of Shapley turn-based stochastic games, subsuming Condon’s simple stochastic games, is reducible to the new class of GLCPs. Based on this we suggest the new strongly...
متن کاملReport on article The Travelling Salesman Problem: A Linear Programming Formulation
Unknown relation between P and NP [3] complexity classes remains to be one of significant non solved problems in complexity theory. P complexity class consists of problems solvable by Deterministic Turing Machine (DTM) in polynomially bounded time, while NP complexity class consists of problem solvable by Non Deterministic Turing Machine (NDTM) in polynomially bounded time. This means that DTM ...
متن کاملUniform nonsingularity and complementarity problems over symmetric cones
Abstract. We study the uniform nonsingularity property recently proposed by the authors and present its applications to nonlinear complementarity problems over a symmetric cone. In particular, by addressing theoretical issues such as the existence of Newton directions, the boundedness of iterates and the nonsingularity of B-subdifferentials, we show that the non-interior continuation method pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 107 شماره
صفحات -
تاریخ انتشار 2006